CalculateItToday

Simple Harmonic Motion Calculator

Calculate SHM Parameters

Basic Parameters

Advanced Parameters

Results

Enter values above to calculate SHM parameters

About Simple Harmonic Motion

Simple Harmonic Motion (SHM) is a type of periodic motion where the restoring force is directly proportional to the displacement and acts in the direction opposite to that of displacement.

Key Concepts:

  • Period (T): Time for one complete oscillation
  • Frequency (f): Number of oscillations per unit time
  • Angular Frequency (ω): Rate of change of phase angle
  • Amplitude (A): Maximum displacement from equilibrium
  • Phase Angle (φ): Initial phase of the oscillation

Key Formulas:

  • T = 2π√(m/k) - Period (spring-mass)
  • T = 2π√(L/g) - Period (pendulum)
  • T = 2π√(I/κ) - Period (torsional)
  • f = 1/T - Frequency
  • ω = 2πf = √(k/m) - Angular frequency
  • v_max = Aω - Maximum velocity
  • a_max = Aω² - Maximum acceleration
  • E = ½kA² - Total energy

SHM Equations:

  • x(t) = A cos(ωt + φ) - Displacement
  • v(t) = -Aω sin(ωt + φ) - Velocity
  • a(t) = -Aω² cos(ωt + φ) - Acceleration

System Types:

  • Spring-Mass: Mass attached to spring
  • Simple Pendulum: Point mass on string
  • Torsional Pendulum: Rotating mass on wire

Units:

  • Period: seconds (s)
  • Frequency: Hertz (Hz)
  • Angular frequency: rad/s
  • Amplitude: meters (m)
  • Spring constant: N/m
  • Energy: Joules (J)

Applications:

  • Clocks and timekeeping
  • Musical instruments
  • Seismometers
  • Atomic clocks
  • Resonance systems